DOUBLE WALL FLAT OVAL HVAC DUCT and FITTINGS

for Air Duct and Fittings as Manufactured by Members of SPIDA

Turn Key Duct Systems is a proud member of SPIDA

www.SPIDA.org

P.O. Box 1665
Irmo, SC 29063

Copyright: SPIDA, 2002
DOUBLE WALL FLAT OVAL DUCT AND FITTINGS

LEGEND

DWFOSP - FLAT OVAL 'SPIRAL' DWFOE - ELBOW
DWFOSET - OFFSET DWFOT - TEE
DWFOS - COUPLING DWFOL - LATERAL
DWFON - END CAP DWFOC - CROSS
DWFOTREC - OVAL TO RECTANGULAR DWFOST - SADDLE
DWFOR - REDUCER DWFOY - WYE FITTING
 S - SLIP (2") V - BODY LENGTH
 H - HEIGHT L - REDUCER LENGTH
 Z - DIMENSION OF OFFSET R - RADIUS

MATERIAL

GALVANIZED STEEL ALUMINUM PVS
PAINT GRIP STAINLESS

DIMENSION

The "A" dimension is what you see in the plan view.
The "a" or second dimension is the hidden dimension.

Eg: a 24x12 DWFOE-90-5-H is a "Hard Bend" or "Long Way" flat
 oval 90 elbow
 a 12x24 DWFOE-90-5-E is an "Easy Bend" or "Short Way" flat
 oval 90 elbow

When dimensions B x b, and/or C x c, and/or D x d are shown, the
first dimension is the plan dimension. If a fitting end is round, use
only one dimension.

Conical fittings may taper only on plan side.

VANE CHART

For mitered elbows and tees use the following chart if vanes are
required.

<table>
<thead>
<tr>
<th>"A" Dimension</th>
<th>Number of Vanes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 - 9"</td>
<td>2</td>
</tr>
<tr>
<td>10 - 14"</td>
<td>3</td>
</tr>
<tr>
<td>15 - 19"</td>
<td>4</td>
</tr>
<tr>
<td>20 - 60"</td>
<td>5</td>
</tr>
<tr>
<td>Over 60"</td>
<td>12" spacing</td>
</tr>
</tbody>
</table>
ORDERING Specify type of fitting and list the following dimensions:

<table>
<thead>
<tr>
<th>ELBOWS - A x a, B x b</th>
<th>TEES - A x a, B x b, C x c</th>
</tr>
</thead>
<tbody>
<tr>
<td>LATERALS - A x a, B x b, C x c</td>
<td>CROSSSES - A x a, B x b, C x c, D x d</td>
</tr>
<tr>
<td>REDUCERS - A x a, B x b, L, Z</td>
<td>OFFSETS - A x a, B x b, L, Z</td>
</tr>
</tbody>
</table>

The drawings shown are illustrative of the types of fittings manufactured.

All fittings, unless noted, are male sized on each end for slip-joint assembly with Flat Oval Duct.

Sizes shown are nominal. Consult your manufacture for details.

Flat Oval Duct is to be used in positive pressured applications only. Vanstone or other proprietary connections are available by special order.
FLAT OVAL DUCT & FITTINGS SIZES

STANDARD SIZING CHART
For 6" through 20" minor axis

<table>
<thead>
<tr>
<th>INITIAL SPIRAL SIZE</th>
<th>MINOR AXIS</th>
<th>NOMINAL MAJOR AXIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>16</td>
<td>22</td>
<td>21</td>
</tr>
<tr>
<td>18</td>
<td>25</td>
<td>24</td>
</tr>
<tr>
<td>20</td>
<td>28</td>
<td>27</td>
</tr>
<tr>
<td>22</td>
<td>31</td>
<td>30</td>
</tr>
<tr>
<td>24</td>
<td>34</td>
<td>33</td>
</tr>
<tr>
<td>26</td>
<td>37</td>
<td>36</td>
</tr>
<tr>
<td>28</td>
<td>41</td>
<td>39</td>
</tr>
<tr>
<td>30</td>
<td>44</td>
<td>42</td>
</tr>
<tr>
<td>32</td>
<td>47</td>
<td>46</td>
</tr>
<tr>
<td>34</td>
<td>50</td>
<td>49</td>
</tr>
<tr>
<td>36</td>
<td>53</td>
<td>52</td>
</tr>
<tr>
<td>38</td>
<td>56</td>
<td>55</td>
</tr>
<tr>
<td>40</td>
<td>59</td>
<td>58</td>
</tr>
<tr>
<td>42</td>
<td>63</td>
<td>61</td>
</tr>
<tr>
<td>44</td>
<td>66</td>
<td>65</td>
</tr>
<tr>
<td>46</td>
<td>69</td>
<td>68</td>
</tr>
<tr>
<td>48</td>
<td>72</td>
<td>71</td>
</tr>
</tbody>
</table>

Pa

FLAT OVAL DUCT & FITTINGS SIZES

STANDARD SIZING CHART
For 6" through 20" minor axis
FLAT OVAL FITTINGS

<table>
<thead>
<tr>
<th>DWFOE-90-5-H</th>
<th>FOE = (Angle)-(No. of Gores)-(Hard Bend)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DWFOE-60-4-H</td>
<td>FOE = (Angle)-(No. of Gores)-(Easy Bend or Hard Bend)</td>
</tr>
</tbody>
</table>

ROUND FITTINGS

- **E-90-1**
 - STAMPED 90
 - 3" - 12" Diameter only
 - \(R = 1.5 \times A \)

- **E-45-1**
 - STAMPED 45
 - 3" - 12" Diameter only
 - \(R = 1 \times A \)

GORED ELBOWS

- **EV-90-2**
 - 2 pc 90
 - Specify with or without turning vanes
 - \(S = 2" \) \(T = 2" \)

FLAT OVAL FITTINGS

- **DWFOE-90-5-E**
 - FOE = (Angle)-(No. of Gores)-(Easy Bend)
 - \(S = 2" \) \(T = 2" \)

- **DFOWE-90-5-H**
 - FOE = (Angle)-(No. of Gores)-(Hard Bend)
 - \(S = 2" \) \(T = 2" \)

FLAT OVAL FITTINGS

- **FOE-45-3-E**
 - FOE = (Angle)-(No. of Gores)-(Easy Bend or Hard Bend)
 - \(S = 2" \) \(T = 2" \)

- **FOEV-90-2-E**
 - Mitered 90 Standard with vanes
 - FOEV = (Angle)-(No. of Pieces)-(Easy or Hard Bend)
 - \(S = 2" \) \(T = 2" \)

FLAT OVAL FITTINGS

- **FOEV-90-2-H**
 - Mitered 90 Standard with vanes
 - FOEV = (Angle)-(No. of Pieces)-(Easy or Hard Bend)
 - \(S = 2" \) \(T = 2" \)

FLAT OVAL FITTINGS

- **DFOWE-60-4-E**
 - FOE = (Angle)-(No. of Gores)-(Hard Bend)
 - \(S = 2" \) \(T = 2" \)

FLAT OVAL FITTINGS

- **DFOWE-60-4-H**
 - FOE = (Angle)-(No. of Gores)-(Hard Bend)
 - \(S = 2" \) \(T = 2" \)

FLAT OVAL FITTINGS

- **DWFOE-90-5-H**
 - FOE = (Angle)-(No. of Gores)-(Hard Bend)
 - \(S = 2" \) \(T = 2" \)

FLAT OVAL FITTINGS

- **DFOWE-90-5-H**
 - FOE = (Angle)-(No. of Gores)-(Hard Bend)
 - \(S = 2" \) \(T = 2" \)

FLAT OVAL FITTINGS

- **DWFOE-60-4-H**
 - FOE = (Angle)-(No. of Gores)-(Hard Bend)
 - \(S = 2" \) \(T = 2" \)

FLAT OVAL FITTINGS

- **DFOWE-60-4-H**
 - FOE = (Angle)-(No. of Gores)-(Hard Bend)
 - \(S = 2" \) \(T = 2" \)
FLAT OVAL FITTINGS

DWFOT-1 TEE

A & C are inner shell dimension

DWFOT-1R REDUCING TEE

A, B & C are inner shell dimension

DWFOCON-T-1 CONICAL TEE

A & C are inner shell dimension

DWFOCON-T-1R CONICAL REDUCING TEE

A, B & C are inner shell dimension
FLAT OVAL FITTINGS

DWFOL LATERAL

![Diagram of DWFOL LATERAL fitting]

- \(S = 2" \quad T = 2" \)
- \(V = ((C+2) \times 1.414) + 4" \)

A & C are inner shell dimension

DWFOLR REDUCING LATERAL

![Diagram of DWFOLR REDUCING LATERAL fitting]

- \(S = 2" \quad T = 2" \)
- \(V = ((C+2) \times 1.414) + 4" \)
- \(L = 12" \) IF \((A-B) < 16"\)
- \(24" \) IF \((A-B) > 16"\)

A, B & C are inner shell dimension

DWFOCON-L CONICAL LATERAL

![Diagram of DWFOCON-L CONICAL LATERAL fitting]

- \(S = 2" \quad T = 2" \)
- \(V = ((C+4) \times 1.414) + 4" \)

A & C are inner shell dimension

DWFOCON-LR CONICAL REDUCING LATERAL

![Diagram of DWFOCON-LR CONICAL REDUCING LATERAL fitting]

- \(S = 2" \quad T = 2" \)
- \(V = ((C+4) \times 1.414) + 4" \)
- \(L = 12" \) IF \((A-B) < 16"\)
- \(24" \) IF \((A-B) > 16"\)

A, B & C are inner shell dimension
FLAT OVAL FITTINGS

DWFOCMBT
COMBINATION TEE

- C = 3 - 8 Y= 4"
- C = 9 - 14 Y=7"
- C = 15 - 26 Y=10"
- C = 27 & up Y= 13"

\[S = 2" \quad T = 2" \]

\[V = ((C+2) + Y) + 4" \]

\[A \times a \]

\[T \quad S \quad V \quad S \quad T \]

A & C are inner shell dimension

DWFOCMBTR
COMBINATION TEE RED.

- C = 3 - 8 Y= 4"
- C = 9 - 14 Y=7"
- C = 15 - 26 Y=10"
- C = 27 & up Y= 13"

\[S = 2" \quad T = 2" \]

\[V = ((C+2) + Y) + 4" \]

\[C \times c \]

\[L = 12" \text{ IF } (A-B)<16 \]

\[24" \text{ IF } (A-B)>16 \]

A, B & C are inner shell dimension

DWFOCMBCR
COMBINATION CROSS RED.

- C = 3 - 8 Y= 4"
- C = 9 - 14 Y=7"
- C = 15 - 26 Y=10"
- C = 27 & up Y= 13"

\[S = 2" \quad T = 2" \]

\[V = (\text{larger of C or D+2}) + Y) + 4" \]

\[C \times c \]

\[L = 12" \text{ IF } (A-B)<16 \]

\[24" \text{ IF } (A-B)>16 \]

A, B, C & D are inner shell dimension

DWFOCMBCT
COMBINATION CROSS

- C = 3 - 8 Y= 4"
- C = 9 - 14 Y=7"
- C = 15 - 26 Y=10"
- C = 27 & up Y= 13"

\[S = 2" \quad T = 2" \]

\[V = (\text{larger of C or D+2}) + Y) + 4" \]

\[A \times a \]

\[A \times a \]

A, C & D are inner shell dimension

DWFOCMBCTR
COMBINATION CROSS RED.

- C = 3 - 8 Y= 4"
- C = 9 - 14 Y=7"
- C = 15 - 26 Y=10"
- C = 27 & up Y= 13"

\[S = 2" \quad T = 2" \]

\[V = (\text{larger of C or D+2}) + Y) + 4" \]

\[C \times c \]

\[A \times a \]

\[A \times a \]

A, B, C & D are inner shell dimension

FLAT OVAL FITTINGS
FLAT OVAL FITTINGS

DWFOC CROSS

- $V = (\text{LARGEST TAP} + 2) + 4$
- $S = 2$" $T = 2$"

A, C & D are inner shell dimension

DWFOCON-C CONICAL CROSS

- $V = (\text{LARGEST TAP} + 4) + 4$
- $S = 2$" $T = 2$"

A, C & D are inner shell dimension

DWFOY EQUAL Y

- $S = 2$" $T = 2$"

A, C & D are inner shell dimension

DWFORED-Y REDUCING Y

- $S = 2$" $T = 2$"
- $L = 12$" IF (A-B)<16
- 24" IF (A-B)>16

A, C & D are inner shell dimension
FLAT OVAL FITTINGS

DWFOLOC
LATERAL CROSS

- **DWFOLOC**
- **LATERAL CROSS**

A, C & D are inner shell dimension

DWFOLOC
REDUCING LATERAL CROSS

- **DWFOLOC**
- **REDUCING LATERAL CROSS**

A, B, C & D are inner shell dimension

DWFOCON-LC
CONICAL LATERAL CROSS

- **DWFOCON-LC**
- **CONICAL LATERAL CROSS**

A, C & D are inner shell dimension

DWFOCON-LCR
CONICAL REDUCING LATERAL CROSS

- **DWFOCON-LCR**
- **CONICAL REDUCING LATERAL CROSS**

A, B, C & D are inner shell dimension

\[S = 2" \quad T = 2" \]
\[V = ((\text{LARGEST OF TAPS} + 2) \times 1.414) + 4 \]

L = 12" IF (A-B)<16
24" IF (A-B)>16

S = 2" T = 2" V = ((\text{LARGER OF TWO TAPS} + 4) \times 1.414) + 4
L = 12" IF (A-B)<16 24" IF (A-B)>16
FLAT OVAL FITTINGS

<table>
<thead>
<tr>
<th>DWFOR</th>
<th>DWFOER</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONCENTRIC REDUCER</td>
<td>ECCENTRIC REDUCER</td>
</tr>
</tbody>
</table>

- **DWFOR**
 - **A x a**
 - **B x b**
 - **S = 2”**
 - **T = 2”**
 - **L = 12” IF (A-B)<16**
 - **24” IF (A-B)>16**

- **DWFOER**
 - **A x a**
 - **B x b**
 - **S = 2”**
 - **T = 2”**
 - **L = 12” IF (A-B)<16**
 - **24” IF (A-B)>16**

- **A & B are inner shell dimension**

<table>
<thead>
<tr>
<th>DWFOSET</th>
<th>DWFOTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFFSET</td>
<td>RECTANGLE TO FLAT OVAL</td>
</tr>
</tbody>
</table>

- **DWFOSET**
 - **A x a**
 - **B x b**
 - **S = 2”**
 - **T = 2”**
 - **V = Z x 2 1/2 (MIN. 12”)**

- **DWFOTR**
 - **A x a**
 - **B x b**
 - **S = 2”**
 - **T = 2”**
 - **V = 12” IF (A-B)<16**
 - **24” IF (A-B)>16**

- **A & B are inner shell dimension**

A & B are inner shell dimension
FLAT OVAL FITTINGS

DWGBT
GRILLE BOX TAP

1" FLANGE TURNED IN

A x B is outside dimension

DWTEGBT
TAPERED ENTRY
GRILLE BOX TAP

1" FLANGE TURNED IN

A x B is outside dimension

DWFOLST
LATERAL SADDLE TAP

\[S = 2" \quad T = 2" \]

A is inner shell dimension

DWFOCMBST
COMBINATION SADDLE TAP

\[S = 2" \quad T = 2" \]

A is inner shell dimension

DWFOST
SADDLE TAP

\[S = 2" \quad T = 2" \]

A is inner shell dimension

DWFOCST
CONICAL SADDLE TAP

\[S = 2" \quad T = 2" \]

A is inner shell dimension
There are a number of methods of connecting fittings and spiral ductwork together. These include but are not limited to the following:

1- Slip fit (as illustrated in this catalogue)
2- Angle rings (vanstone or welded)
3- Proprietary flanges and connectors
 (Econo flange and Spiral mate)
FLAT OVAL FITTINGS

DWFOBHT
BULL HEAD TEE

SPLITTER VANE
STD. OPT. TURNING VANES

<table>
<thead>
<tr>
<th>S</th>
<th>A</th>
<th>x</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>S</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

S = 2"
T = 2"

V = A + 4"

A is inner shell dimension

DWFOBHTR
BULLHEAD TEE RED.

SPLITTER VANE
STD. OPT. TURNING VANES

<table>
<thead>
<tr>
<th>S</th>
<th>A</th>
<th>x</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>S</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S = 2"
T = 2"

V = A + 4"

L = 12" IF (A-B)<16
24" IF (A-B)>16

A,B & C are inner shell dimensions